Florida Stone Fruit – A Taste of Summer in the Spring: Production and Challenges

Dr. Mercy Olmstead, Stone Fruit Specialist
UF-IFAS Extension, Gainesville
Domestic Consumption

U.S. Fresh Peach Consumption

U.S. consumption has stayed relatively flat and is declining.

USDA-ERS, 2014
Domestic Consumption

• Other produce categories increase
 • Consumers want finger foods
 • “Lunchbox Apples”
 • Baby carrots, bagged apples, blueberries, pre-cut fruit bowls

• FRUIT QUALITY
 • Consumers want sweet fruit, with characteristic peach flavor
 • 12–16% Soluble Solids Content (SSC, a.k.a. Brix)
 • >13°Brix = threshold for flavor development?
 • Need more research on peach fruit quality!
Peaches vs. Nectarines

• Peaches = Nectarines!
 • What’s different about them?

 • The “fuzz” is one gene difference in the skin
 • Nectarine = recessive for the gene
 • Naturally occurring

• Nectarines tend to be:
 • Smaller
 • More blush on skin
 • Sweeter
Peach Flesh Types

- Melting flesh focus
 - Juicy
 - Shipping problems
 - Short shelf-life

- Non-melting flesh genes introduced
 - Firmer, tree-ripe
 - Shipping is easier
 - Longer lasting fruit at home
 - Consumer bias (firm=unripe)?
 - Need education on new textures
What are Florida Peaches?

- **Texture**
 - Dr. Wayne Sherman brought in non-melting flesh gene
 - Bred fruit that were not rubbery
 - Brought in HONEY gene

- **Low-chill**
 - Peaches are a temperate crop
 - “Up north” vs. FL
 - 100-400 chill units
Choosing a Site
- Chill Unit Accumulation
- Soil Type
- Irrigation/Fertigation

Choosing a Variety
- Melting/Non-melting
- Market Window

Take a Soil Sample!
- Pre-plant adjustments
- pH (~6.5)
- No wet feet!

Planting the Orchard
- Clean cultivation
- Pest/disease management

Peach Orchard Establishment

Peach Orchard Establishment
What to Grow?

- Peaches, nectarines, and plums
- All need a certain amount of “chill units” even though low-chill varieties have been developed

How is a unit of chill defined?

- Unit Definition
 - One unit = 1 hour between 37°F and 48°F (Ideal range)
 - Accumulated over a 24 hour period
- Resources
 - AgroClimate; http://agroclimate.org
 - Chill Unit Accumulation for past two weeks
Temperature: 32-45 °F - Collier County (FL)

Period: [Oct 1, 2014 - Dec 7, 2014]

- This season: 9 Hours
- Last season: 4 Hours
- Historic average: 17 Hours

Legend:
- Current accumulation
- Neutral years, long-term climatology
- Historic Average
- Last season

Graph showing total accumulated and projected hours from Oct 1 to Jan 7.
Temperature: 32-45 °F - Collier County (FL)

Period [Oct 1, 2014 - Jan 31, 2015]:
- This season: 52 Hours
- Last season: 43 Hours
- Historic average: 123 Hours

Accumulated by 11 day periods

<table>
<thead>
<tr>
<th>Period</th>
<th>Current Accumulation</th>
<th>Historic Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oct 1 - Oct 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 12 - Oct 22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oct 23 - Nov 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 3 - Nov 13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 14 - Nov 24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nov 25 - Dec 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 6 - Dec 16</td>
<td>30 Hours</td>
<td>30 Hours</td>
</tr>
<tr>
<td>Dec 17 - Dec 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dec 28 - Jan 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan 8 - Jan 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan 19 - Jan 29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan 30 - Jan 31</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Historical Chill Unit Accumulation

Based on hours below 45°F received to Feb. 10th in 75% of the winters
Chill Unit Models

- **Standard Model**
 - $<45^\circ\text{F}$

- **32-45°F Model**
 - Most common; [Agroclimate](#)

- **Utah Chill Model**
 - Add or subtract units based on ideal range
2013-14 Chill Accumulation

October 1, 2013 – February 28th, 2014

<table>
<thead>
<tr>
<th>Model</th>
<th>Citra</th>
<th>Fort Pierce</th>
<th>Lake Alfred</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Chill (<45°F)</td>
<td>417</td>
<td>97</td>
<td>85</td>
</tr>
<tr>
<td>AgroClimate (32-45°F)</td>
<td>382</td>
<td>72*</td>
<td>144</td>
</tr>
<tr>
<td>Utah Chill Model</td>
<td>-1027</td>
<td>-1828</td>
<td>-474</td>
</tr>
<tr>
<td>Historical Average (FAWN)</td>
<td>368</td>
<td>224*</td>
<td>209</td>
</tr>
</tbody>
</table>

Sebring, FL is closest station
Choosing A Peach Variety

• 75% of historical average in chill unit accumulation
 • 250 seasonal accumulation
 • ~187 units
 • TropicBeauty, UFSun, UFBest, UFGem

• Tree growth habit
 • Planting density

<table>
<thead>
<tr>
<th>Spacing Between Trees</th>
<th>Spacing Between Rows</th>
<th>Total Trees/Acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>25</td>
<td>116</td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td>145</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>218</td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td>290</td>
</tr>
</tbody>
</table>
FlordaPrince vs. TropicBeauty

Upright Growth

Semi-spreading Growth
Peach Flesh Types

- Melting texture
 - Juicy
 - Prone to chilling injury (mealiness)
 - Shipping problems
 - Short shelf-life

- Non-melting texture
 - Firmer, tree-ripe
 - Shipping is easier
 - Longer lasting on shelf
 - Consumer bias (firm=unripe)?
 - Need education
Marketing Florida Peaches

Thousand Metric Tons

US Marketing Season Peaks
May 20 - September 30

Based on Monthly Imports for 2001
Source: U.S. Census Bureau
UFSun

- Non-melting texture
- 100-150 chill units
- Fruit developmental period (FDP) = 80-85 days
- 50-60% red skin with darker red stripes
- Clingstone with yellow flesh
- Trees are highly vigorous with semi-spreading growth
TropicBeauty

- Melting texture
- Requires ~150 chill units
- FDP = 89 days
- Good flavor
- Yellow background
- Good for local markets
UFBeauty

- Non-melting texture
- 200 chill units
- FDP=82 days
- Yellow flesh with clingstone pit
- Red skin over 90% of fruit with medium large size
- Trees are highly vigorous with semi-spreading nature
Flordaprince

- Melting texture
- 150 chill units
- Good flavor, local markets
- Early ripening (last week of April)
- FDP = 78 days
- Upright, semi-vigorous growth
Cultural Practices
Planting & Training Systems

• Soil type:
 • Sandy, well-drained soil
 • Ideal pH: 6.5-7.0

• Orchard site may need beds
 • Poor site drainage
 • Should be at least 18” high to facilitate drainage

• Weed-free strip to reduce competition

• Tree guards can be useful for herbicide application
Tree Guards
Peach Growth

Vegetative Bud → Flower Bud

One year old wood
Blind Wood

- No leaves to support current season’s fruit, no buds to produce future shoots
- More prevalent with fast, vigorous growth
Open Vase Training System

- Traditional System
 - In other locations – 6-8 years for trees to fill in spaces
 - Florida = ideal growing conditions with 7-8 feet of growth per year

- Trees trained to 3-4 scaffolds
 - Cover each quadrant to optimize light interception

- Tree height set at 8 feet
 - Optimize activities without use of ladders
Open vase

- Pruning young trees:

 after pruning | pruned — 6 months | pruned — 12 months | plan view

 Year 1 | Year 2
Before & After (Winter):
Before & After (Spring):

R. Marini, Virginia Tech Cooperative Ext. #422-020
Perpendicular-V High Density
Florida Prince vs. Tropic Beauty

Upright Growth

Semi-spreading Growth
Open Vase Training System

• Mature trees must be managed to optimize sunlight interception

• Avoid sunburn!!
 • Leave a few upright shoots in canopy center during summer pruning
Pruning Terminology

Pruning anatomy

- Leader
- Scaffold limb
- Watersprouts
- Secondary scaffold
- Crotch
- Root sucker
- Trunk
Types of Pruning Cuts

• Heading Cuts
 • Invigorate the tree
 • Increase branching by causing lateral bud break

• Thinning Cuts
 • Reduce branch number
 • Encourage apical shoot elongation
Pruning Principles for Orchards

• Pruning:
 • Develops strong tree structure
 • Thins buds to achieve yields of high quality fruit
 • Balances cropload with vegetative growth
 • Especially important with short fruit developmental period in Florida (78 days vs. 120 days; temperate climates)
 • Development of good-sized fruiting wood vs. blind wood
Pruning Principles for Orchards

- Remove diseased or dead limbs
- In Florida, two pruning periods:
 - Winter
 - Summer

UF2000; Botryosphaeria
Pruning Principles for Orchards

• Reduces canopy temperature by increasing air flow (directly)
 • Can reduce incidence of doubling fruit
Pruning Techniques

- Remove watersprouts
 - Vigorous, upright growth
 - Fruit produced is of poor quality
 - Wide internode spacing
 - Shading for lower branches
- Prune out diseased or dead wood
 - Peach Tree Short Life
 - Unexplained shoot dieback
Pruning Techniques

• Remove limbs or branches that cross
 • These increase shade
 • Can cause mechanical damage on fruit

• Thin canopy
 • Fruit buds require light to develop
 • Excessive shade = higher proportion of vegetative buds
 • Reducing fruiting wood helps to reduce thinning costs
Pruning Summary

- Prune to maintain productive tree
- Heading cuts can result in thinner fruiting wood
- Thinning cuts should be the majority of those made in each season.
Peach/Plum Flowering

• Peaches and Nectarines do not need pollinizers
 • They are self-fertile
 • Do not need hives to pollinate
 • Native populations set adequate fruit

• Plums need pollinizers
 • All three varieties can work as pollinizers
 • ‘Gulfrose’
 • ‘Gulfblaze’
 • ‘Gulfbeauty’
Fruit Growth

- Peaches, nectarines and plums have double sigmoidal growth
Fruit Thinning

- Peaches and nectarines must be thinned to get large fruit size
 - Plums only thinned if too heavy for branch
- Should be thinned before pit hardening
 - Otherwise, won’t make difference in fruit size
- Thin to at least 6” between each fruit
Tree on left has ideal cropload and canopy growth

Tree on right has heavy cropload, poor canopy

Thinning and pruning are important for cropload management

Good balance with crop and canopy

Not thinned
Fertilization

- Use a balanced 10-10-10 fertilizer
 - 1st year: 11-12 lbs N/ac
 - 2nd year: 26-39 lbs N/ac
 - 3rd year: 80-110 lbs N/ac

- Sandy soils: 12-4-8 fertilizer
 - Minimizes potassium and phosphorus leaching

- Zinc deficiency shows up readily in sandy soils with higher pH
 - Plums more sensitive to it
 - Yellowing leaves, green veins, short internodes
Impact of pH on Nutrients

• pH affects nutrient availability
 • The thicker the bar, the more available the nutrient

• Solutions with high pH water?
 • Acidify the water source
 • Monitor soil pH and acidify as necessary
 • Apply fertilizers with sulfur to bring pH down
Peach Bud Hardiness

<table>
<thead>
<tr>
<th>Bud Development Stage</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% bud kill</td>
<td>18</td>
<td>21</td>
<td>23</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>90% bud kill</td>
<td>1</td>
<td>5</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td>24</td>
<td>25</td>
</tr>
</tbody>
</table>

Critical Temperatures for Blossom Buds

<table>
<thead>
<tr>
<th>Bud Development Stage</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old Standard Temp</td>
<td>23</td>
<td>---</td>
<td>---</td>
<td>25</td>
<td>---</td>
<td>17</td>
<td>30</td>
</tr>
<tr>
<td>Avg. Temp for 10% Kill</td>
<td>18</td>
<td>21</td>
<td>23</td>
<td>25</td>
<td>28</td>
<td>27</td>
<td>28</td>
</tr>
<tr>
<td>Avg. Temp for 90% Kill</td>
<td>14</td>
<td>5</td>
<td>9</td>
<td>15</td>
<td>21</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>Average Date (Prosor)</td>
<td>3/7</td>
<td>3/14</td>
<td>3/19</td>
<td>3/29</td>
<td>4/3</td>
<td>4/11</td>
<td>4/18</td>
</tr>
</tbody>
</table>

*For Elberta.

1 Critical temperatures as previously published.

2 Average temperatures found by research at the WSU Research and Extension Center, Prosser, to result in 10% and 90% bud kill.

3 Average date for this stage at the WSU Research & Extension Center.
Organic Production

- Many dooryard growers will not have access to fungicides, insecticides
- Organic production option

- National Sustainable Agriculture Information Service has a resource for organic and low-spray production:
 - http://www.attra.org/attra-pub/peach.html
Peach Diseases and Pests
Peach Diseases

- Botryosphaeria dothidea (Fungal Gummosis)
 - Amber colored sap hardens and provides entry for pests and diseases
 - Flordaguard rootstock is highly susceptible
 - Fungicide applications to trunk early (yrs. 1-3) can help to control
 - White latex paint + mildicide is another option
 - Potential rootstocks evaluated for susceptibility
Peach Diseases

• Peach Scab
 • Common problem in SE U.S.
 • Caused by Cladosporium carpophilium Theum.
 • Spots on fruit, lesions on twigs
 • Controlled with fungicides or sulfur
 • Important to control shortly after fruit set and into early part of fruit growth
 • Can affect leaves as well
 • Organic options:
 • Sulfur
 • OxiDate
 • Serenade®

Images: http://ipmimages.com
Peach Diseases

• Bacterial Spot
 • Caused by Xanthomonas pruni
 • Indicated by yellow, chlorotic leaves, with lesions
 • Many recently-released UF varieties are tolerant or resistant
 • Nutrient stresses can exacerbate infection
 • Limited control with copper-based sprays (conventional and organic)
 • Beware of Cu toxicity
 • Leaves will drop and exhibit “shot hole”

Images: http://ipmimages.com
Peach Diseases

- **Peach Leaf Rust**
 - Caused by Tranzschelia discolor
 - Visible during the late summer/fall
 - Causes tree defoliation, early bloom in winter
 - Need to keep leaves on as long as possible
 - Growth, develop fruit buds for next season
 - Controlled with fungicides
 - Organic option: sulfur
 - Oxidate
 - Serenade®
Peach Leaf Rust
Peach Diseases

• Peach Tree Short Life
 • Possible causes:
 • Cold damage and Pseudomonas syringae
 • Nematodes (ring nematode)
 • Growth is delayed in spring, shoot collapse often seen
 • “Sour sap”
 • Phloem, xylem usually dead
 • Sprout back from rootstock

• No known control
Peach Diseases

• Brown Rot
 • Caused by Monilinia fruiticola
 • Not as large a problem in Florida due to early harvest
 • Thrives in wet conditions (rain during fruit development)
 • Wet fruit over 10 hours enhances spore germination
 • Controlled with multiple fungicide applications
 • Organic option: sulfur + Surround WP™ (kaolin clay)
 • OxiDate
 • Serenade®
Peach Insects

• White Peach Scale
• San Jose Scale
 • Important pest to control
 • Soft chemicals, easy to apply with dormant trees
 • Horticultural oils
 • Must be applied at larval stage to be effective
 • Can have up to 4 generations a year
 • Summer cover sprays important
Peach Insects

• Plum Curculio
 • Resides in wild plum populations around state
 • Remove wild plum trees surrounding new orchard
 • Scout for strikes on fruit – will appear as crescent shaped marks
 • R. Mizell has trap for monitoring

• Controlled with insecticide
• Organic options:
 • Surround WP (Kaolin clay)
Peach Insects

• Stinkbugs
 • Can cause ‘catfacing’ of fruit

• Scout for presence, then use control methods

• Control methods:
 • Target sprays between petal fall and shuck-fall
 • Clean row middles (avoid excessive weeds)
 • Carbaryl (Sevin®)
 • Organic options:
 • Trap cropping (direct stinkbugs to alternative crop)
 • Sunflower
 • Buckwheat
 • Sorghum

Images, R. Mizell, M. Ross, M. Olmstead, UFL
Tedders Trap

- http://ufinsect.ifas.ufl.edu/weevil-trapping.htm
- Plum curculio (black)
- Stinkbugs (yellow)
- Easy to make or contact R. Mizell (RFMizell@ifas.ufl.edu)
Peach Insects

- Lesser Peach Tree Borer
 - Affects scaffolds of trees
- Peach Tree Borer
 - Near soil line
- Controlled by insecticides
 - Before fruit set or after harvest
 - Interior white latex paint on trunk (not organically approved)
- New technique coming along for biocontrol
 - Entomopathogenic Nematodes
 - Spray on nematodes and it kills borer larvae
 - Spray on barrier gel to keep moist
 - Barricade Fire Gel
 - Method in development (SE U.S. scientists)
Peach Insects

- Caribbean Fruit Fly

- Important pest in S. Florida

- Control methods:
 - Scout using McPhail traps
 - Release parasitic wasps
 - Malathion sprays
 - Bait + spinosad (GF-120) can cause markings on peaches
 - Available in organic form (Entrust)
Spotted Wing Drosophila

- Deposits eggs in and on ripening fruit
 - Large problem in Western U.S. orchards
 - Found in Florida

- Build traps to monitor
Peach Website

• http://hos.ufl.edu/extension/stonefruit

• For more information:
 • Mercy Olmstead
 352-273-4772
 mercy1@ufl.edu
Lastly...

- Who is your consumer?

- Farmers’ Market
- Big Box Store
- Local Grocery Store
Questions?