ARTICLE INFO

Introduction

The Miracle berry, *Richardella dulcifica* or *Synsepalum dulcificum* also known as miracle fruit is a kind of cherry plant, which originates from West Africa. The glycoprotein, miraculin in miracle berry is responsible for its unique function (suppression of sour taste). It acts by binding to the sweet receptor cells of the tongue, thus suppressing the response to sour taste in the central nervous system and this effect can be sustained up to 50 minutes to 4 hours. It could be harnessed as a novel or alternative additive in the food, cosmetic and pharmaceutical industries and could be an abundant source of hydrophilic and lipophilic antioxidant-rich phytochemicals. In miracle berry, more than ten phenolics were identified. Also, contains oxidizable vitamins, essential and non-essential amino acids. Its application is interesting, particularly, it is known to exhibit anti hyperuricaemic activity, improves dysguesia, and expressed in transgenic plant. This review is meant to enhance the fruits’ acceptability and also promotes its utilization in reducing the risk of chronic diseases generally associated with lipid metabolism. This article provides an overview of Synsepalum dulcificum, commonly known as Miracle berry and its unique taste modifying properties by miraculin, a glycoprotein with particular reference to its history, the proposed mechanism of action, functions, limitations and potential applications. In addition, it focuses on the Indian varieties of miracle fruit and their formulations. The method of extraction of miraculin from the berry in laboratory scale is also discussed with emphasis on the storage condition(s).

Keywords: Miracle fruit, Miraculin, Taste modifier, Richardella dulcifica, hyperuricaemia.

Methodology

The review was systematically conducted by searching the databases of MEDLINE, PubMed, the Web of Knowledge, Google Scholar, and Science Direct for original research articles and books using relevant search terms or their combinations: “Miraculin, miracle berry, miracle fruit, Richardella dulcifica, Gymnema sylvestre, Synsepalum dulcificum, and taste-modifier.” Our search was not limited by date but to all relevant publications available in the English language.

Miracle berry phytochemicals

Besides Miracle Fruit’s unique potential to make sour food taste sweet, the pigment from the red-coloured skin could be a natural colour food ingredient. Miracle fruit is rich in antioxidants. These phytochemical antioxidants have been confirmed to possess health-promoting functions in preventing various chronic diseases, such as cardiovascular diseases, obesity, diabetes and certain cancers. Miracle berry also contains hydrophilic and lipophilic phytochemicals. Anthocyanin and flavanol pigments in miracle fruit leaves and petals are identified as cyanidin-3-monoglucoside, cyanidin-3-monogalactoside, delphinidin-3-monohydroxylisoquinoline, cyanidin-3-monooarabinoside, and delphinidin-3-monoglucoside using paper chromatography and spectral analysis. Rutin, gallic acid, ferulic acid, quercetin, epicatechin, myricetin, kaempferol, syringic acid are phenolics, whereas also contain levulin, vitamin A, C and E with tocopherols and tocotrienols. Miracle berry also contains essential amino acids (leucine, methionine), non-essential amino acid (Glutamic acid, glycine). Miracle berries leaves, and roots are rich in carbohydrate, fibres, tannins, cardiac glycosides, polyphenols, flavonoids and minerals.

*Corresponding author. E-mail: bharti.mangla91@gmail.com, kanchankohli50@gmail.com
Tel: +91 11 26099688

Citation: Mangla B and Kohli K. Pharmaceutical and Therapeutic Potential of Miraculin and Miracle Berry. Trop J Nat Prod Res. 2018; 2(1):12-17. doi.org/10.26538/tjnpr/v2i1.3

© 2018 Natural Product Research Group, Faculty of Pharmacy, University of Benin. All rights reserved.
Figure 1: Miracle berry

Gallic acid

Quercetin

Ferulic acid

Epicatechin

Syringic acid

Kaempferol

Leucin

Methionine

Figure 2: Molecular structures of phenolics present in Miracle berry

Glutamic acid

Glycin

Cyanidin-3-O-glucoside

Delphinidin-3-O-glucoside

Malvidin-3-O-glucoside

Vitamin C

Vitamin A

alpha-tocopherol

beta-tocopherol

gamma-tocopherol

Figure 3: Molecular structures of essential amino acids present in Miracle berry

Figure 4: Molecular structures of non-essential amino acids present in Miracle berry

Figure 5: Molecular structures of anthocyanins present in Synespalum ducificus

Figure 6: Molecular structures of vitamins present in Synespalum ducificus
Health benefits of Miracle berry

The value of the fruit as a taste modifier has possible benefits for human health. Various studies have proven that the fruit and leaf extracts of miracle berry help in reducing the blood glucose level in alloxan-induced albino rats.14,15 Shi et al.,16 described that the butanol extracts of miracle fruits induiced an effective treatment for acute gouty arthritis.16 This extract attenuated oxonic acid sodium salt-induced hyperuricaemia in mice by lowering serum uric acid levels and activating hepatic xanthine oxidase. Miracle fruits have tremendous therapeutic properties as shown in Figure 6.

Extraction and purification of miraculin

Inglett et al.,17 modified the extraction procedure of Adom and Liu,.19 which described two-extraction methods for the pulp and seeds of Miracle Fruit. The first method was Sequential extraction which includes two steps i.e. double extraction for free compounds and Alkaline extraction for bound compounds. The second method was direct extraction method. Before analysis dried pulp-seeds were separated into pulp and seeds after freeze-drying. The skin, pulp and seeds were ground individually to fine powder.15,18 Diosio et al.,19 performed the extraction method of fruits and leaves of this plant. They macerate leaves and fruits of miracle plant with ethanol and then evaporate at room temperature.17 He, et al.,20 modified the extraction method for miraculin from miracle berry as described by Theerasilp and Kurihara.,22 In this method, lyophilized pulp powder was suspended with water and homogenized. The homogenate was centrifuged and the sediment was homogenized in 0.5 M sodium chloride solution. Then again centrifuged and the colourless supernatant was freeze-dried.22,30 Miraculin has been purified by using various methods like solvent extraction method from polar to non-polar and from non-polar to polar in succession,9 ion-exchange chromatography technique,10 immobilized-metal affinity chromatography (IMAC),31 and reverse micelle system.30 The solvent extraction method is tedious and the purity of miraculin is relatively low. High purity miraculin was obtained by ion-exchange chromatography technique but this is time-consuming, inefficient and costly. IMAC is a simple and efficient method, but this method is difficult to scale-up beyond laboratory scale and considered to be expensive.31,32 It has been proved that reverse micelle extraction method is an efficient method to extract miraculin from miracle berry due to its low energy requirements and also shows great potential for large-scale application and use in continuous separation of biological substances.32

Mechanism of taste modifying activity of miraculin

The flesh of the berry contains aglycoprotein, miraculin, with a molecular weight of about 43,000 D. Miraculin is actually not a sweetener, but has the property of making sour products taste sweet.20-22 It is a glycoprotein consisting of 191 amino acid residues with two glycosylated polypeptides i.e. Asn-186 and Asn-42, cross-linked by a disulphide bond.24-26 It consists of approx. 14 % sugars, including glucosamine, mannose, fucose, galactose, and xylose. The taste-modifying effect of miraculin begins a few seconds after consumption, though several minutes of chewing the berry’s pulp may be necessary to sufficiently coat the taste buds. The duration of the taste-modifying effect typically lasts 30 minutes to 2 hours.25-28 Miraculin binds tightly to the lingual epithelium’s microvilli plasma membrane of sweet-taste receptors (hT1R2-hT1R3) without activating them. Miraculin does not activate these receptors until subjected to an acidic pH, generally, between pH 3.0 and 6.0.29 The possible mechanism of miraculin in the modification of taste is shown in Figure 9.

Limitations and Preservation of miracle berry

Miracle berry or Richardella dulcifica is highly perishable. It is thermolabile and inactivated below pH 3 and above pH 12. Not used in cooking and in processed foods because it degrades at high temperature. These limitations can be overcome by preservation techniques using a polysaccharide chitosan coating.33 Also, the miracle berry can be freeze-dried at -20° F for approximately 3 months before use without significant degradation.34 The miraculin protein itself very stable and can be stored in pure form or in solution for 6 months without loss of function35 and long-time storage can be done in Ziploc bags.
Figure 9: Mechanism of taste modifying activity of miraculin

Figure 10: Marketed formulation of miracle berry

Figure 11: Molecular structures of bioactive compounds present in Gymnema sylvestre

Table 1 illustrates an updated report on patents on therapeutic application of miracle berry and miraculin along with its Indian variety i.e. Gymnema sylvestre.

<table>
<thead>
<tr>
<th>Patent No.</th>
<th>Title</th>
<th>Publication date</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>US 20160317430 A1</td>
<td>Cosmetic use of an extract of Gymnema sylvestre</td>
<td>Nov 3, 2016</td>
<td>44</td>
</tr>
<tr>
<td>CA 2919487 A1</td>
<td>Method and kit for bowel preparation</td>
<td>Feb 6, 2014</td>
<td>45</td>
</tr>
<tr>
<td>246537 (Indian Patent)</td>
<td>A process for preparation of a novel compound gymnemic triacetate from Gymnema sylvestre R. Br. leaves with antidiabetic activity</td>
<td>Mar 11, 2011</td>
<td>46</td>
</tr>
<tr>
<td>EP 1750736 B1</td>
<td>Uses for the extract of Gymnema sylvestris</td>
<td>Apr 21, 2010</td>
<td>48</td>
</tr>
<tr>
<td>US 20040071801 A1</td>
<td>Herbal formulation of Gymnema sylvestre as a dietary aid.</td>
<td>Apr 15, 2004</td>
<td>49</td>
</tr>
<tr>
<td>US 5886155 A</td>
<td>Purification of miraculin glycoprotein using tandem hydrophobic interaction chromatography</td>
<td>Mar 23, 1999</td>
<td>50</td>
</tr>
<tr>
<td>EP 0406516 A1</td>
<td>A process for extracting the concentrated gymnemate from Gymnema sylvestre and an equipment for using in the process</td>
<td>Jan 9, 1991</td>
<td>52</td>
</tr>
<tr>
<td>CA 1162094 A</td>
<td>Chewing gum containing sugar substitute</td>
<td>Feb 14, 1984</td>
<td>53</td>
</tr>
<tr>
<td>US 3995031 A</td>
<td>Method of controlling obesity with purified active principle of fruit of Synsepalum dulcificum.</td>
<td>Nov 30, 1976</td>
<td>54</td>
</tr>
<tr>
<td>US 3925547 A</td>
<td>Isolation and purification of active principle of fruit of Synsepalum dulcificum</td>
<td>Dec 9, 1975</td>
<td>55</td>
</tr>
<tr>
<td>US 3849555 A</td>
<td>Method for modifying sour and bitter taste</td>
<td>Nov 19, 1974</td>
<td>56</td>
</tr>
<tr>
<td>US 3682880 A</td>
<td>Protein flavouring agents prepared from Synsepalum dulcificum.</td>
<td>Aug 8, 1972</td>
<td>57</td>
</tr>
<tr>
<td>US 3620770 A</td>
<td>Coated straw for modifying sour taste</td>
<td>Nov 16, 1971</td>
<td>58</td>
</tr>
</tbody>
</table>
Owing to its numerous attributes, miracle berry exploitation has aroused researchers interest in discovering an efficient taste modifier via miraculin. Though miracle berry has interesting and promising uses in the food, pharmaceutical, as well as in cosmetic industry, the fruit wide spread usage is however limited by its availability and perishability. To overcome this limitation, researchers are producing recombinant miraculin in transgenic plants, notably tomatoes. The various phytochemicals in the miracle fruit have been confirmed to possess health promoting functions in reducing various chronic diseases such as diabetes, cancers, acute gouty arthritis, hypertension, cardiovascular diseases and in weight loss. This information enhances the fruits acceptability by more people and thus, generally promotes its utilization and appreciation in human diets.

Conclusion

To overcome this limitation, researchers are producing recombinant miraculin in transgenic plants, notably tomatoes. The various phytochemicals in the miracle fruit have been confirmed to possess health promoting functions in reducing various chronic diseases such as diabetes, cancers, acute gouty arthritis, hypertension, cardiovascular diseases and in weight loss. This information enhances the fruits acceptability by more people and thus, generally promotes its utilization and appreciation in human diets.

Conflict of interest

The authors declare no conflict of interest.

Authors’ Declaration

The authors hereby declare that the work presented in this article is original and that any liability for claims relating to the content of this article will be borne by them.

Acknowledgements

The authors would like to thank Department of Science and Technology (DST) for providing INSPIRE fellowship award and granting financial assistance.

References

17. Diosso MKM, Satsatin DCA, Ching JA. Hypoglycemic effects of Synsepalum dulcificum (Schumach. & Thonn.) Daniell (Miracle Berry) fruit and leaf extracts on the blood glucose level of albino rats. Der Pharmacia Lettre. 2016; 8:104-108.
31. Duhita, N, Hiwasa-Tanase K, Yoshiha S, Ezura H. Single-step purification of native miraculin using immobilized metal-

ISSN 2616-0684 (Print)
ISSN 2616-0692 (Electronic)


